

Conférence de présentation

Réglementation thermique « Grenelle Environnement 2012 »

21 janvier 2011

Marie-Christine ROGER

Chef du bureau qualité et réglementation technique de la construction

MEDDTL - DGALN - DHUP

Une concertation large et structurée

- ✓ 2 ans de travaux depuis septembre 2008
- √ 13 groupes de travail thématiques dont 1 GT Tertiaire :
 - ✓ 20 à 25 experts thématiques représentant les professions,
 - En moyenne 6 réunions par groupe de travail depuis octobre 2008
- ✓ Une consultation publique périodique quant aux avancées des orientations via les conférences consultatives :
 - ✓ 120 représentants des 5 collèges de la gouvernance du Grenelle
 - √ 7 conférences consultatives (organisations professionnels, ...)
- ✓ 1 groupe de travail d'« applicateurs » experts de la réglementation thermique
 - √ 40 des bureaux d'études thermiques et centres techniques les plus reconnus, chargé de tester l'applicabilité des nouvelles règles sur des projets réels représentatifs des différents secteurs de la construction
 - ✓ Des dizaines de milliers de tests réalisés
 - Continuent à tester les nouvelles versions du moteur de calcul

Les travaux d'élaboration de la RT 2012 sont en partie finalisés

- ✓ Le 6 juillet 2010, Monsieur Jean-Louis BORLOO, ministre d'Etat, et Monsieur Benoist APPARU, secrétaire d'Etat, ont tenu une conférence de presse pour présenter la RT 2012
 - « Une avancée majeure du Grenelle Environnement, sans équivalent en Europe : la généralisation des Bâtiments Basse Consommation (BBC), un saut énergétique plus important que celui réalisé ces 30 dernières années »
- ✓ Les textes réglementaires publiés sont en ligne avec les objectifs qui ont été précisés pendant la conférence de presse

Le calendrier en fonction du domaine d'application

- ✓ Publication des textes réglementaires le 27 octobre 2010 :
 - ✓ Un décret en Conseil d'Etat modifiant l'article R.111-20 du Code de la Construction et de l'Habitation
 - ✓ Un arrêté décrivant les grands principes et les exigences pour les bâtiments neufs concernés par l'application de la RT2012
- ✓ Dates d'application :
 - √ 28 octobre 2011 pour :
 - ✓ Les bâtiments à usage d'habitation (maisons individuelles, logements collectifs, foyers de jeunes travailleurs et cités universitaires) situés en zone ANRU
 - ✓ Les bureaux,
 - ✓ Les bâtiments d'enseignement primaire et secondaire,
 - ✓ Les établissements d'accueil de la petite enfance.
 - ✓ 1er janvier 2013 pour les bâtiments à usage d'habitation situés hors zone ANRU

Le calendrier en fonction du domaine d'application

✓ Textes à paraître :

- ✓ Un arrêté décrivant la méthode de calcul Th-BCE 2012 applicable et les conventions associées
- ✓ Un 2^{ème} décret et un 2^{ème} arrêté concerneront d'autres bâtiments tertiaires (hôtels,restaurants, universités, commerces)

Sommaire de la présentation

- ✓ Les grands principes de la RT 2012 (20')

 David JUIN (DHUP)
- ✓ La méthode de calcul Th-BCE 2012 (20')

 Jean-Robert MILLET (CSTB)

Questions / Réponses (10')

✓ Deux exemples de bâtiments de bureaux respectant la RT 2012 (20')

Nathalie TCHANG (Tribu Energie)

Questions / Réponses (30')

✓ Conclusion (5')

Marie Christine ROGER (DHUP)

Conférence de présentation

Réglementation thermique « Grenelle Environnement 2012 »

21 janvier 2011

David JUIN

Chef de projet réglementation thermique

MEDDTL – DGALN – DHUP

Le législateur a inscrit les constructions nouvelles dans l'excellence

- ✓ Les objectifs pour les bâtiments neufs inscrits à l'article 4 de la loi du 3 août 2009 relative à la mise en œuvre du Grenelle de l'Environnement :
 - ✓ Généralisation des bâtiments basse consommation
 - ✓ Évolution technologique et industrielle significative

✓ Pour la RT 2012 :

- ✓ Consommation d'énergie primaire inférieure à 50 kWh_{FP}/(m².an) en moyenne
- ✓ Modulation de l'exigence (localisation géographique, des caractéristiques et de l'usage des bâtiments, émissions de gaz à effet de serre des bâtiments)
- Définition d'un seuil ambitieux de besoin maximal en énergie des bâtiments

✓ Pour la RT 2020 :

 Des bâtiments qui, sauf exception, produisent plus d'énergie renouvelable qu'ils n'en consomment, notamment le bois-énergie

Le cœur de la RT 2012 : trois exigences de résultats

- ✓ Exigence d'efficacité énergétique minimale du bâti : le besoin bioclimatique ou « Bbio_{max} »
 - ✓ Exigence de limitation simultanée du besoin en énergie pour les composantes liées au bâti (chauffage, refroidissement et éclairage)
 - ✓ Une innovation conceptuelle majeure, sans équivalent en Europe
- ✓ Exigence de consommation maximale : « Cep_{max} »
 - ✓ Exigence de consommation maximale d'énergie primaire (objectif de valeur moyenne de 50 kWh_{FP}/(m².an))
 - ✓ 5 usages pris en compte : chauffage, production d'eau chaude sanitaire, refroidissement, éclairage, auxiliaires (ventilateurs, pompes)
- ✓ Exigence de confort en été
 - Exigence sur la température intérieure atteinte au cours d'une séquence de 5 jours chauds

Le Besoin bioclimatique : Bbio

✓ Bbio : le besoin bioclimatique

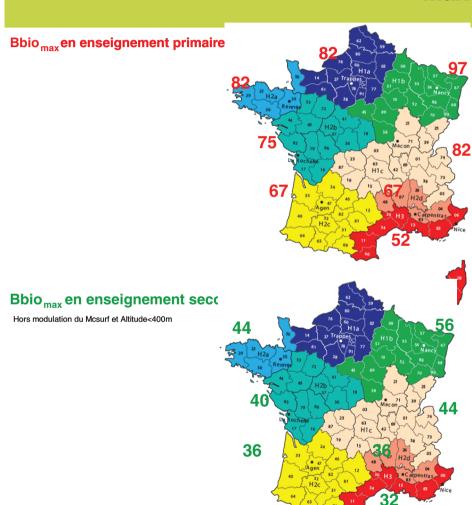
- ✓ Un indicateur rendant compte de la qualité de la conception et de l'isolation du bâti, indépendamment des systèmes.
- ✓ Un indicateur qui valorise la conception bioclimatique (accès à l'éclairage naturel, protection solaire, inertie, capter les apports solaires, faible profondeur du bâtiment...),
- ✓ Le coefficient Bbio remplace le Ubat présent dans la RT 2005 et qui ne prenait en compte que le niveau d'isolation du bâti.

La RT 2012 donne une plus grande liberté dans la conception des bâtiments

- ✓ Une réglementation plus lisible
 - ✓ Expression des exigences en valeur absolue
 - ✓ Suppression de nombreux « garde-fous » techniques de la RT2005
- ✓ Une réglementation « performantielle »
 - ✓ Les exigences se concentrent sur la performance globale du bâtiment
 - ✓ Les quelques exigences de moyens sont limitées au strict nécessaire, avec pour objectif de faire pénétrer significativement une pratique (équipements d'énergie renouvelable, perméabilité, ...)
- ✓ Des coefficients de conversion en énergie primaire confirmés :
 - ✓2,58 pour l'électricité
 - √1 pour toutes les autres énergies
 - → Une plus grande liberté dans la conception des bâtiments

Quelques exigences de moyens pour le tertiaire

- ✓ Pour garantir la qualité de mise en œuvre :
 - Traitement des ponts thermiques
- ✓ Pour une meilleure optimisation de l'éclairage :
 - ✓ Dans les circulations et parties communes intérieures verticales et horizontales :
 - √ dispositif automatique permettant, lorsque le local est inoccupé, l'extinction des sources de lumière
 - √ dispositif permettant une extinction automatique du système d'éclairage dès que l'éclairement naturel est suffisant
 - Dans les parcs de stationnement couverts et semi-couverts :
 - ✓ Soit un dispositif permettant d'abaisser le niveau d'éclairement au niveau minimum réglementaire pendant les périodes d'inoccupation
 - ✓ soit un dispositif automatique permettant l'extinction des sources de lumière artificielle pendant les périodes d'inoccupation, si aucune réglementation n'impose un niveau minimal
- ✓ Pour un bon usage du bâtiment :
 - ✓ Mesure ou estimation des consommations d'énergie par usage


La consommation maximale d'énergie : le Cep_{max}

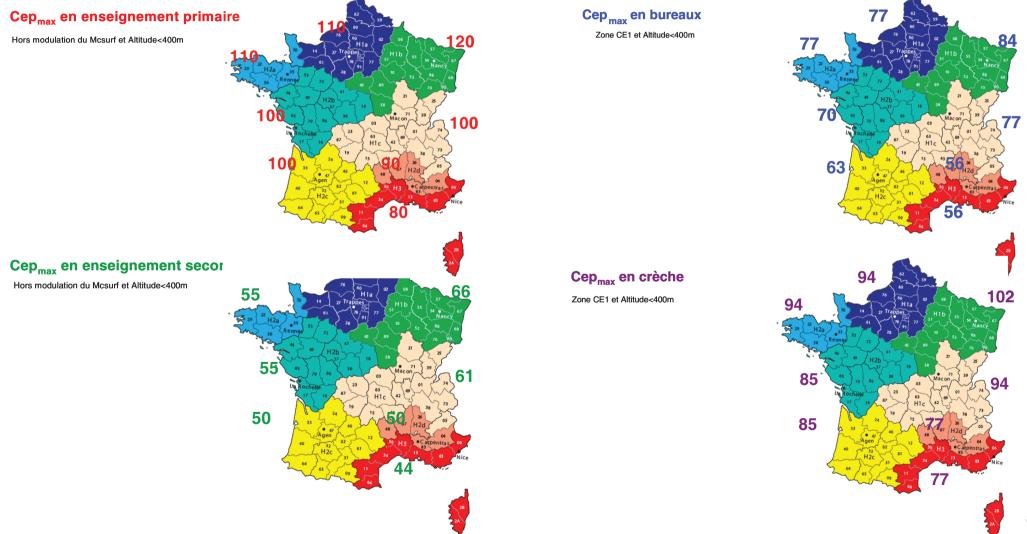
- ✓ Consommation conventionnelle d'énergie maximale Cep_{max}
- ✓ Modulation en fonction de :
 - ✓ L'usage (catégories de bâtiment)
 - ✓ La zone climatique (8)
 - ✓ L'altitude
 - √ (La surface moyenne des logements)
 - ✓ Des émissions des gaz à effet de serre des énergies utilisées pour le bois et les réseaux de chaleur

$$Cep_{max} = [valeur \ pivot] \times M_{ctype} \times (M_{cg\acute{e}o} + M_{calt} + M_{csurf} + M_{cGES})$$

Modulation du Bbio_{max} selon la zone géographique (CE1)

Bbio_{max} en bureaux

Hors modulation du Mcsurf et Altitude<400m


Bbio_{max} en crèche

Hors modulation du Mcsurf et Altitude<400m

Modulation du Cep_{max} selon la zone géographique (CE1)

Modulation selon les GES: les réseaux de chaleur

- ✓ Une modulation de la consommation maximale en fonction des émissions de gaz à effet de serre
- ✓ Pour les réseaux :

Contenu CO2 des réseaux de chaleur ou de froid en g/kWh				
	contenu $CO_2 \le 50$	$50 \le \text{contenu CO}_2 \le 100$	$100 \le \text{contenu CO}_2 \le 150$	contenu CO ₂ ≥ 150
$ m M_{cGES}$	0.3	0.2	0.1	0

- ✓ Des contenus qui figurent en annexe 7 de l'arrêté du 15 septembre 2006 (DPE vente) et qui sont régulièrement mis à jour
- ✓ Pour les créations de réseaux ou en cas travaux très significatifs récents : dispositif de cas particulier (extension du champ du Titre V)

Définitions utiles

- ✓ Nécessité de définir des exigences spécifiques pour certaines catégories de bâtiments dits « CE2 » qui sont dans l'obligation d'installer des systèmes actifs de refroidissement pour assurer un bon confort d'été :
 - ✓ Définition précisée dans l'arrêté du 26 octobre 2010
 - ✓ Bâtiments dont les fenêtres ne peuvent pas s'ouvrir :
 - ✓ en raison de règles de sécurité (IGH par exemple)
 - ✓ en zones de bruit (aéroports, voies rapides ...)
- √ Tous les autres bâtiments sont dits de « catégorie CE1 »

Les avancées de la RT 2012

Les outils complémentaires pour une meilleure application

L'aide à l'innovation : le dispositif de Titre V

- ✓ Procédure personnalisée permettant de promouvoir :
 - ✓ les spécificités architecturales et techniques dans les projets de construction lorsque la méthode de calcul Th-BCE 2012 n'est pas adaptée
 - ✓ en intégrant des systèmes innovants et performants énergétiquement dans la méthode de calcul Th-BCE 2012

L'accompagnement de la conception et le respect de la RT 2012

- √ Attestation par le maître d'ouvrage au dépôt de la demande de permis de construire
 - ✓ de la réalisation de l'étude de faisabilité d'approvisionnement en énergies (mise en place par la loi POPE de 2005)
 - ✓ De la prise en compte de la réglementation thermique
- ✓ Attestation par le maître d'ouvrage à l'achèvement des travaux que **le maître d'œuvre** a pris en compte la réglementation thermique :
 - ✓ Réalisée par un contrôleur technique, un diagnostiqueur, un organisme certificateur ou un architecte

Conférence de présentation

Réglementation thermique « Grenelle Environnement 2012 »

21 janvier 2011

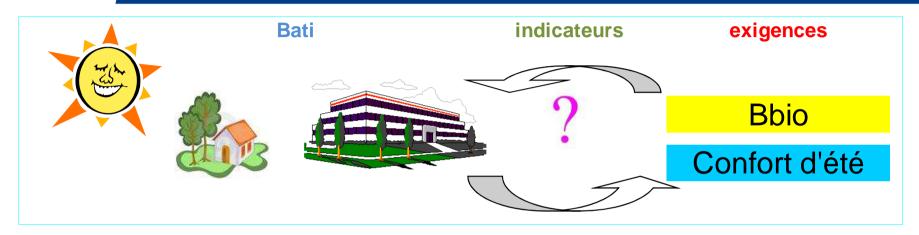
Merci de votre attention

Conférence de présentation RT 2012

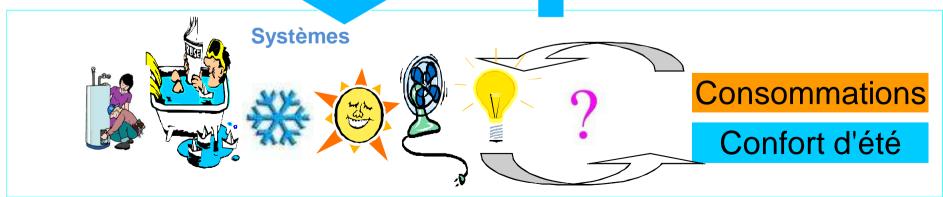
21 Janvier 2011

Méthode et impact sur la conception

J.R. Millet CSTB



Exigences et méthode


- Exigences sur le bâti (Bbio), les consommations (Cep) le confort thermique d'été (Tic)
 - introduction du Bbio
 - exigences formulées en valeur absolue
 - la valeur à respecter est connue au départ du projet
 - tout les éléments de conception sont valorisés
- Exigences minimales
 - réduites par rapport à 2005
- La méthode de calcul associée (Th-BCE 2012) a été développée pour être plus proche des valeurs de terrain
 - dans la limite de scénarios et comportements des occupants purement conventionnels
 - du fait du caractère "opposable" de l'approche réglementaire

Une approche en deux étapes : bâti, systèmes (dont ENR)

Permet une première appréciation lors des phases initiales de conception, indispensable pour l'optimisation bioclimatique et le choix des systèmes

La méthode RT2012

■ La méthode Th BCE 2012

- proche des phénomènes physiques (simulation thermique dynamique)
- "statistiquement" représentative en termes de données météorologiques, de scénarios et de comportement des occupants

Coté utilisateur

- données d'entrée et interface proches de 2005, complétées pour la prise en compte de systèmes innovants
- valorisation accrue du dimensionnement réel des systèmes
- fourniture d' "aides à la conduite" : les indicateurs pédagogiques

Coté industriels

- transparente en termes d'algorithmes et d'hypothèses
- fiable et évolutive, en particulier pour traiter les composants et systèmes innovants

Caractéristiques de la méthode de calcul

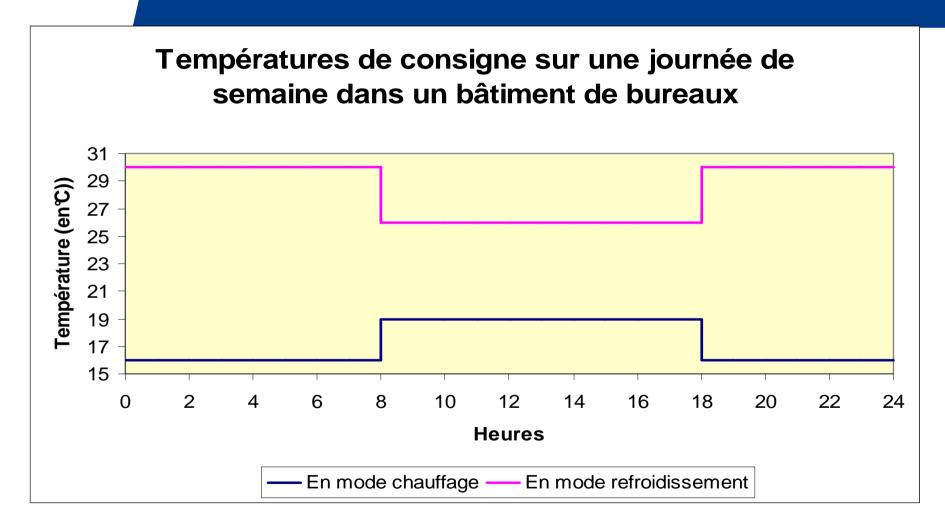
- Certains paramètres doivent traduire un comportement moyen observé en France
 - Indépendants et inconnus lors de la conception du bâtiment (ex : nombre d'occupants)
 - → Non saisis par l'utilisateur et inscrits directement dans la méthode de calcul
 - ⇒ Sont définis de façon conventionnelle et sont basés sur des études statistiques
- Ne peut pas faire l'objet d'un engagement contractuel

Les données météorologiques

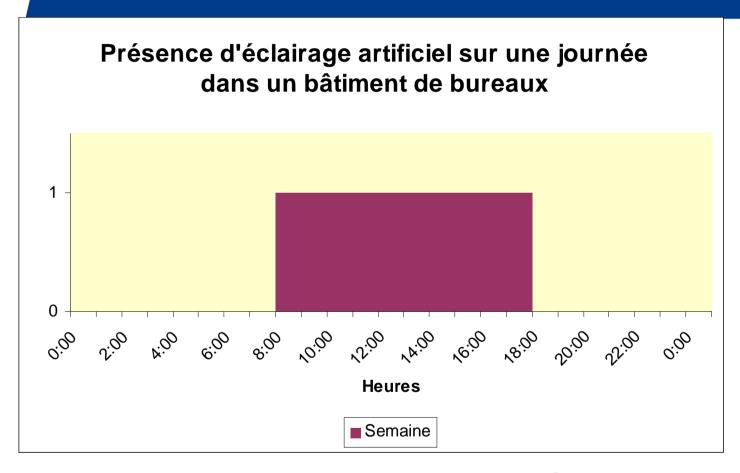
- Fichiers météorologiques fournis par Météo France
- Découpage de la France en 8 zones climatiques
- Constitution d'années météorologiques types au pas horaire, reconstituées sur la base des mesures des 15 à 20 dernières années (stations météo disposées sur 8 départements différents)
- Facteur correctif des données météorologiques selon l'altitude avec 3 niveaux : <400m, de 400 à 800m, >800m
- Types de données :
 - température de l'air
 - la vitesse du vent
 - rayonnement direct normal

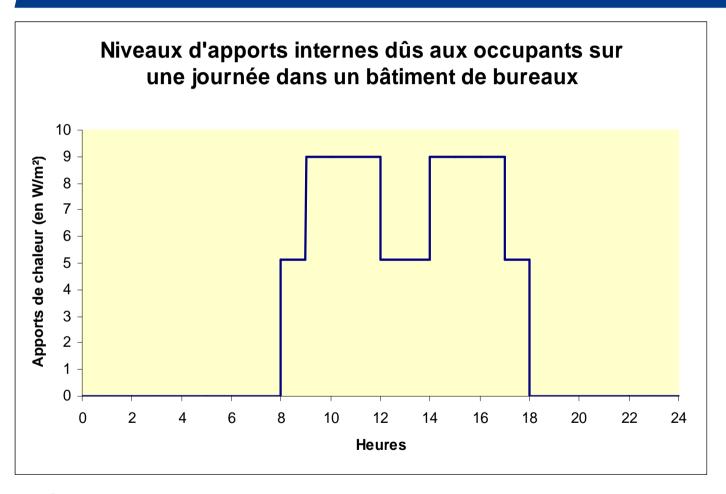
• ...

Définition des scénarios conventionnels

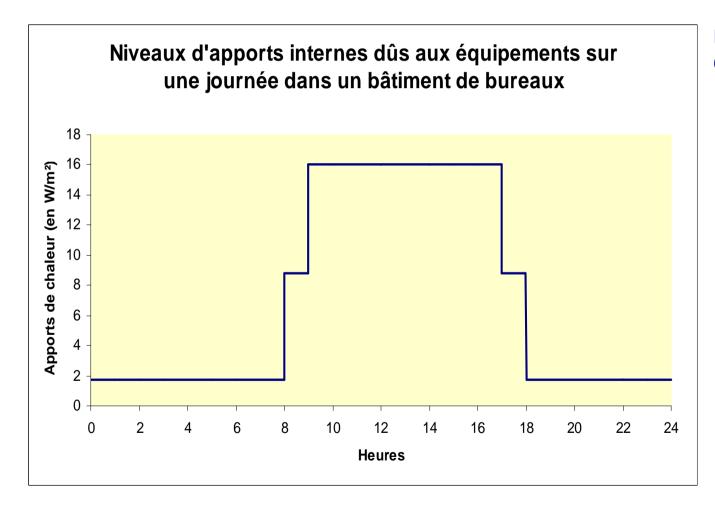

- Traduisent un comportement « standard »
- Ont été entièrement re-documentés en se basant sur différentes études statistiques et affinés en fonction des secteurs d'activité : logement, bureau, enseignement ...
- sont décrits sur une base horaire pour une semaine type, avec prise en compte si nécessaire de semaines de vacances

Les catégories de scénarios conventionnels


- Les scénarios d'occupation (température de consigne, présence des occupants...) sont définis au niveau d'une zone de bâtiment.
 - Un même bâtiment peut contenir plusieurs zones
 - Ex : dans un lycée, on peut retrouver une zone « enseignement » et une zone « restaurant »
- Les scénarios d'apports internes (apports de chaleur, apports d'humidité ...) sont définis au niveau du local.
 - Une même zone peut contenir plusieurs locaux
 - Ex: dans une zone « bureaux », on retrouve les locaux suivants:
 - Bureau standard
 - Salle de réunion
 - Circulation
 - Sanitaires collectifs


■Pas de prise en compte de semaines de vacances dans l'année

- ■Cela ne signifie pas qu'une consommation d'éclairage est comptabilisée entre 8h et 18h
- ■Pas de prise en compte d'éclairage artificiel le weekend



■ Hypothèses prises en compte pour ce calcul :

Apport de chaleur d'un homme en activité normale : 90 W

■ Hypothèses prises en compte pour ce calcul :

Des équipements en fonctionnement 24h/24h
Des équipements en fonctionnement en occupation uniquement

La conception d'un bâtiment RT2012

3 "piliers" à conjuguer

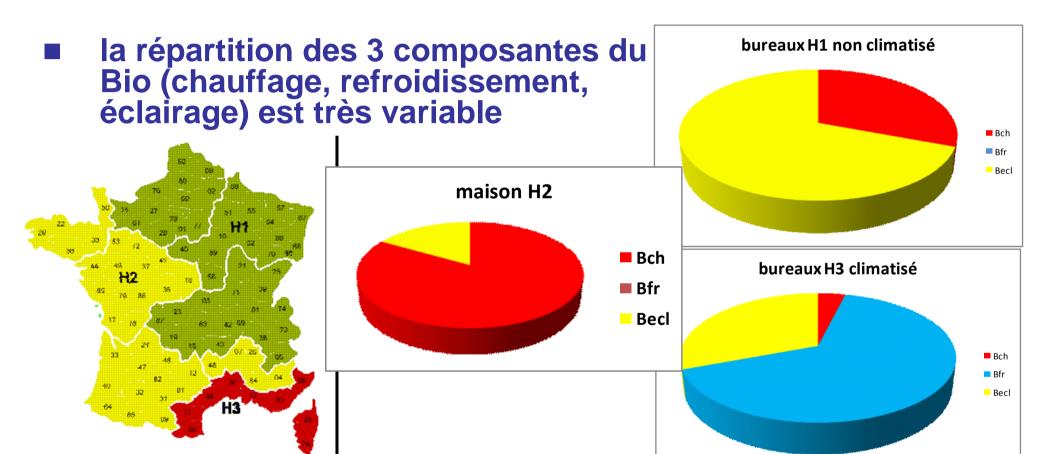
- La conception du bâti
- Le choix de systèmes énergétiques efficaces
- L'apport des énergies renouvelables

3 principes

- Tous les éléments de conception sont à considérer
 - De la forme du bâti au choix des pompes de circulation
- Il n'y a pas de solution "universelle"
 - Du fait des variétés d'usages et de climat
- La démarche doit accompagner l'ensemble du processus de conception
 - Impact accru des choix architecturaux

La conception du bâti

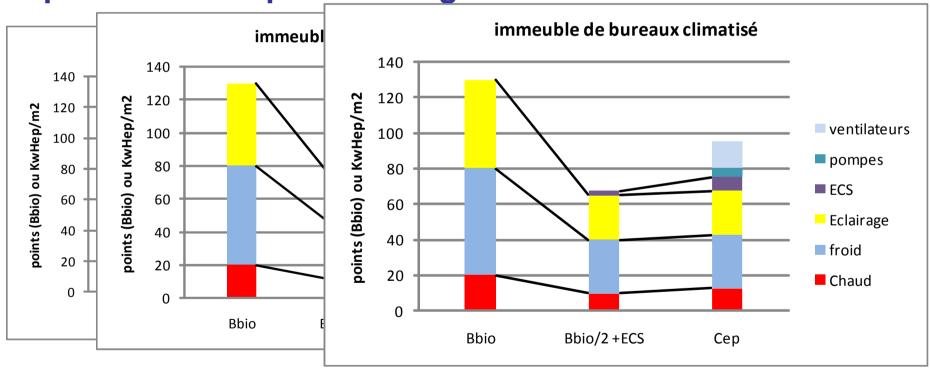
■ Le coefficient Bbio


- permet une appréciation du bâti sur les besoins de chauffage, refroidissement et éclairage
- porte sur la totalité de la conception du bâti
 - Enveloppe (isolation, apports solaires et lumineux, étanchéité)
 - Structure interne (inertie)
 - Organisation interne (locaux et lumière du jour)

Le confort d'été

- proche de la RT 2005 (jour chaud de référence)
 - valorisation de la protection solaire, de l'ouverture des baies et de la ventilation traversante, de l'inertie
- sera modifié:
 - Confort au fil du temps
 - Exigence en valeur absolue

Les 3 composantes du Bbio



Ainsi que les moyens d'optimisation

Du Bbio au C

 Le Bbio + les besoins d'ECS (faibles pour les bureaux) permettent un premier diagnostic

■ L'atteinte de l'objectif en kWhep peut se faire de multiples façons (dans le respect des exigences minimales)

Conclusion(s)

- Par l'exigence en valeur absolue, la RT 2012 demande de prendre en compte tous les aspects de conception
 - mais en réduisant fortement les exigences de moyens
- L'optimisation doit être menée dès les phases initiales de conception
 - le dialogue maitre d'ouvrage architecte bureau d'étude devient essentiel
 - le coefficient Bbio facilitera ce dialogue
- Les paramètres essentiels varient suivant le climat et le type de bâtiment
 - la conjugaison bâti / systèmes / ENR devient centrale
 - sans solution "unique" universelle